PHYSICAL REVIEW E

VOLUME 49, NUMBER 6

JUNE 1994

Green’s function method for random fuse network problems

Ravi Bhagavatula,! Kan Chen,? C. Jayaprakash,’ and Huang-Jian Xu®
! Department of Physics, The Ohio State University, Columbus, Ohio 43210
2 Department of Physics, National University of Singapore, Singapore 0511
3 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90024
(Received 23 November 1993)

We propose and study a method that self-consistently solves for the current and voltage distri-
butions in random fuse network problems using lattice Green’s functions. The method solves for
the current distribution by only keeping track of the defect bonds and can treat networks with two
extreme types of defects: insulating bonds and superconducting bonds. We apply this method to
study the breakdown features of a simple two-dimensional superconductor-resistor-insulator network.

PACS number(s): 05.40.+j

I. INTRODUCTION

A variety of breakdown phenomena such as dielectric
breakdown and brittle fracture have been modeled by
networks with quenched randomness [1]. The scalar ver-
sion of the problem is a random fuse network with a
random distribution of elements with different I-V char-
acteristics, between the nodes of a geometrically regular
lattice. The dependence of the breakdown phenomenon,
characterized by quantities such as the breakdown volt-
age and current and the topology of the “broken” bonds
in the network, on the nature of the distribution, es-
pecially in the vicinity of a percolation threshold, has
been of interest. The vector version of the problem is a
random elastic network which has also been extensively
investigated. Over the past few years, several numer-
ical techniques and efficient algorithms have been de-
veloped to study network problems both close to and
away from the percolation threshold [2-5]. The numer-
ical problem for random fuse networks is to solve for
node voltages using Kirchoff’s law at each node and
thereby obtain the current distribution. Some of the ap-
proaches use the well-known conjugate gradient method
along with preconditioning techniques such as Fourier ac-
celeration [6]. Other techniques to calculate the conduc-
tivity of fuse networks include bond-propagation [7] and
transfer-matrix [8] methods. In this paper, we present a
different method that directly solves for the current dis-
tribution in the random fuse network by keeping track of
the defect bonds in contrast to the standard conjugate
gradient method and its variants.

We illustrate the method by studying the breakdown
of a simple two-dimensional fuse network on a square
lattice with a fraction p; of insulating bonds (infinite re-
sistance) and p, of shorted bonds (zero resistance). The
motivation for the model comes partly from experimental
investigations of several granular superconducting mate-
rials and disordered thin films which can be modeled by
such networks [9]. A recent experiment by Yagil et al. [10]
also finds evidence for the possible existence of these two
kinds of defects in their gold (Au) and silver (Ag) films.
While it may be difficult to generalize some of the ex-
isting methods to networks with both these two extreme
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types of defects present simultaneously, we show that our
method can be applied to these problems. Furthermore,
it has the advantage that the size of the matrix that en-
ters the problem scales as N x N, where N is the number
of defect bonds in the network. Thus our method is es-
pecially suited to the study of models with low defect
concentrations; this regime is also of relevance to cer-
tain polymer cracking models [11]. Near the percolation
threshold we employ the well-known trick of removing
the disconnected parts and the dead arms of the percola-
tion cluster [12], thereby reducing the number of defect
bonds; this makes our method numerically feasible [13].

We briefly summarize our results: It is useful to recall
the important result derived by Duxbury et al. [2] that
the breakdown properties of a fuse network in the pres-
ence of insulating defects depend crucially on the “most
critical defect,” i.e., the arrangement of a given number
of insulating defects leading to the largest enhancement
in the current through a fuse in the network; this led
to the breakdown current scaling to zero logarithmically
with the size of the system. We find similar results for
the fuse networks with two types of defects. In partic-
ular, the behavior predicted by a Lifshitz type of argu-
ment, which is based on the most critical defect in the
system for dilute defect concentrations, persists even in
the presence of large variations in the resistances. In ad-
dition, for a given system size and defect concentrations,
the distribution of the breakdown currents (for different
defect configurations) is better described by a double ex-
ponential form similar to that in Refs. [2, 3] than the
commonly used Weibull form [18]. We have also con-
sidered both avalanche dynamics and the one-at-a-time
dynamics used in Ref. [2] while studying the breakdown
of the entire network. Both dynamics yield qualitatively
similar results.

II. MODEL AND METHODOLOGY

Our model consists of a square lattice network of size
L x L, as shown in Fig. 1, with each bond between
neighboring sites representing either a fuse or a defect.
The fuse behaves Ohmically with a resistance R up to a
breakdown voltage and then it irreversibly becomes an
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FIG.1. A 10x10random fuse network with free boundary

conditions on the right and left edges. On the top and bottom
edges, either constant current or constant voltage is applied.
The defect concentrations p; and ps are approximately 0.1.
The empty and crossed bonds represent insulating (type I
defect) and shorted (type II defect) bonds, respectively.

insulator (a defect with infinite resistance). The defects
in our model are bonds whose resistance R4 is not equal
to R. We will focus on the following two types of defects
in this paper: “type I” defects that are insulating, Rq =
00, and “type II” defects that are superconducting, Ry =
0. Generalization to other defects is straightforward.

As the external current or voltage is increased some of
the individual fuses will break until eventually there is
a breakdown of the entire network, i.e., there is no con-
ducting path across the network. The sequence of fuses
that break can be determined as the external current
is increased by finding the current distribution in the
network for given external current or voltage. Clearly
the fuse that breaks first is the one with the maximum
current which depends on the initial defect distribution.
Note also that as more fuses break, the number of type
I defects increases and the current distribution has to be
recalculated. Therefore we need a method to solve for the
current and voltage distribution when the defect config-
uration and the boundary conditions are prescribed.

Let us first calculate the current distribution due to a
single defect in an infinite system. Since the problem of
determining the current distribution is linear, the solu-
tion of the problem with many defects is given by a linear
combination of single-defect solutions. The key is to de-
termine the coefficients of the linear combination. This
can be accomplished, as we will show below, by solving
a set of self-consistency equations.

A. Single defect

Let I,(r) and I, (r) denote the currents along the posi-
tive z and y directions, respectively, and V' (r) the voltage
at site r. The current distribution obeys Kirchoff’s law,
which enforces local current conservation at every node
in the circuit:

I (r) — I(r — &) + Iy(r) — Iy(r — &) = 0. (1)

The current in each bond in turn is related to the voltage
drop by Ohm’s law:

Ly(r)=[V(r+é&,) —V(r)]/R (2)
at a normal bond and
Ly(r) =[V(r+8&,) - V(r)]/R4 (3)

at a defect bond. Note that for a type I defect this cor-
responds to zero current; for a type II (superconducting)
defect one has a zero voltage drop condition.

Consider now a single defect at the bond (re, ro +
€.). To solve the problem we separate out the additional
current and voltage contributions due to the presence of
the defect:

Ly=I0+1I,,, (4)
Vv=v0O vy, (5)

In the preceding, I(®) (V(9)) is the current (voltage) dis-
tribution in the absence of the defect and I’ (V') is the
additional current (voltage) due to the defect. The de-
termination of I’ is facilitated by separating it into two
parts: I}(r) = In° (r) + sy r, and I(r) = L'V (r). We
have defined 119 (r) = [V'(r+&,,y) —V'(r)]/R; the con-
tribution to the extra current is determined by the extra
drop in voltage across each bond assuming that the de-
fect bond also has a resistance R. The second term is
a non-Ohmic or defect current, which is nonzero only at
the defect bond and is necessary to satisfy Eq. (3). Using
Kirchoff’s law for I’ (since I and I° satisfy Kirchoff’s law
so does I'), we obtain the equation for V':

Vie+é,)+V(r—&)+V'(r+8&)+V'(r—&)

—4V'(r) = I4R(br ro+8. — Orro)- (6)

This is simply Poisson’s equation for the potential on the
lattice with a dipole source at the defect bond. Given the
source I; we can solve for V' for an infinite system using
the lattice Green’s function Gy and the result is

V'(r) = I4R[Go(r — rg) — Go(r — g — &;)]

= I4RG,(r — ry), (7)
where Gg [14] is given by
Go(r) = #
" ™ gikr
X /;” dk, - dlcy4 S cos(ks) — Zcos(hy)
(8)
The solution for I’ is easily seen to be
I (r) = I4[Go(r — 1o + &) — Go(r — 10)] + Lade,ro,
(9)
I (r) = I4[Gz(r — ro + &) — Go(r —10)]. (10)

If the defect is along &, the corresponding results can be
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obtained by replacing G, by Gy(r) = Go(r) — Go(r —&y).
The unknown defect current I; can now be obtained self-
consistently by choosing its value to satisfy Ohm’s law
across the defect bond [Eq. (3)]: I.(ro) = [V(ro + &) —
V(ro)]/Ra = (I + I'Y)R/Ry; this leads to

IO + 1[Gy (82) — Go(0)] + I
= {I{” + 1[G+ (&) — G=(0)}R/Ra. (11)
Using the fact that G.(e;) — G(0) = —1/2, we have

2(R — Ra)
Ij= 22210
d R+R; °°

Thus Egs. (9), (10), and (12) provide the solution to the
problem of a single defect in an infinite fuse network.

(12)

B. Many defects

For the problem with many defects in a finite sys-
tem, we can similarly characterize each defect or bound-
ary site with a “defect current” I;. By solving a set of
self-consistent equations which are the generalization of
Eq. (11) for a single defect, we can obtain I  for all defect
and boundary bonds; these defect currents determine the
current distribution in the entire system.

The detailed procedure is outlined below: As stated
earlier, we restrict our attention to two types of defect
bonds: type I bonds with R; = oo and type II bonds
with Ry = 0. We emphasize, however, that the method
we present below can be applied to study a set of defect
bonds with any distribution of defect resistances. Sup-
pose there are N defect bonds at the locations {r,}; the
direction of the bond is denoted by %,, which can be ei-
ther z or y. The solution for the currents in the defect
bonds given the defect currents Iy, at the nth defect
bond, which are yet to be determined, can be written as

I,,'" (r,,) = Iz(f) (l‘-n) + ZIdm[ G,‘m (1' —Tm+ é,‘n)

=G, (r — )] + Lin.
(13)

This is the analog of Egs. (9) and (10) restricted to
defect bonds only and the sum is over all defect bonds
that induce an Ohmic contribution at the nth bond.

The values of the defect currents are determined as
before by imposing Ohm’s law whose form depends on
the type of the defect: For an insulating type I bond
the condition is I; (r,) = 0 and for a superconducting
type II bond, I; (r,) = I4, [this corresponds to a zero
voltage drop or equivalently Ii('?)(rn) + Iéf‘o)(rn) = 0].
For convenience let us assume that the first N; bonds
are type I bonds, while the rest are type II bonds. Thus
for n < Np (type I bonds) we have

L, (rn) = Ii(,(.))(rn) + Z Iim| Gi, (v — T + &)
—Gi (v —tm)] + Lan = 0;

(14)
for n > Nj (type II bonds) we have

L (tn) = Jan = ID(00) + 3 Lim[ Gio(r — v + &5,

-G;, (r—ry)]=0.
(15)
Equations (14) and (15) are linear equations and must
be solved to determine the set of defect currents {I,}.
Once the set of defect currents are obtained, the cur-
rents in all the bonds can be calculated using the follow-
ing equations that are analogous to Egs. (9) and (10) in
the single defect case:

L(r) =I(r) + Y _ Lun[ Gip(r — 7o + &) — Gi, (r — 1))
+ 3 Linder, 0z (16)
L(r) = Ig(r) + Zldn[ Gi,(r—rn+&) —Gi (r—ry4)]

+ D Linbe,e, by - (17)

To find the defect currents ( {Ign} ) from the self-
consistency conditions, we can use the following two
methods.

Method 1

Equations (14) and (15) can be written as a matrix
equation:

A;C = C,, (18)

where Cj is a vector with components Cp(n) = Ii(f)(r,.)
for n = 1,...,N and C is a vector whose compo-
nents are the unknown defect currents: C(n) = I, for
n =1,...,N. A; is a known symmetric matrix with
elements related to the Green’s functions. The solution
of this equation can be obtained using a standard linear
equation routine.

Method 2

Equations (14) and (15) can also be solved by itera-
tive schemes. We illustrate the method here by using a
straightforward procedure. More efficient over-relaxation
techniques can be devised to speed up the algorithm. The
iteration equations that determine the currents at step
t + 1 given those at t can be written as follows:

L(t+1) = L)+ Y In(t)] Gi,.(tn —tm + &)

-Gi,,. (rn - rm)] + jﬂ(t)
(19)
for n < N; and
Lt+1) =L#)+ Y In(t)] Gi,(tn — Tm + &)

—G;, (rn — )] (20)
for n > N;. We set the initial (¢ = 0) values by
I.(t =0) = Ii(f)(r,.) for all N defects. At t = 0 and
after each iteration we set fn(t) = —2I,(t) for the N;
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type I bonds and set fn(t) = 2I,(t) for the N, type II
bonds. Note that the above equations can be written as
a matrix equation:

C(t+1) = 4;C(t) (21)

as in method 1, where A, is a traceless real matrix. We
perform the iteration T times until the solution converges
to a desired accuracy [i.e., ||Cpn(t)|| < € for each n cor-
responding to nth defect bond] [15]. It is easy to check
that the effective defect bond currents are given by

T
Idn = Ziﬂ(t) (22)

C. Boundary conditions

Consider an L x L square lattice. For the network
in Fig. 1, (i.e., with free boundary conditions), there is
no current flow through the left and right edges. This
is ensured by placing insulating (type I) bonds at the
right and left edges along the z direction. A constant
input (output) current boundary condition along &, at
bottom (top) boundaries (see Fig. 1) can be considered
by placing modified type I defects at the bottom (top) y
bonds [16]. A constant voltage bias also can be applied
to the network along &, by placing type II defects at the
top (y = L) and bottom (y = 1) z bonds.

III. RESULTS

We study the breakdown of the network with defect
concentrations p; of type I and p, of type II. For simplic-
ity we take the resistance and the breakdown voltage of
a fuse to be unity. We envisage a situation in which the
input current is increased gradually, slowly compared to
the time scale on which the network reaches steady state
for a given external current. Accordingly we introduce
“avalanche dynamics” to describe the breakdown. In real
materials the dynamics of the breakdown involves addi-
tional complexity including thermal effects and their time
scales [17]. Hence the avalanche procedure we adopt here
is a simplification. The avalanche is initiated when the
voltage across a fuse exceeds unity and breaks (becomes
an insulator) irreversibly. We now maintain the input
current at a fixed value. The distribution of currents in
the network obtained after the first fuse breakage can
cause the voltage across other fuses to exceed unity re-
sulting in further breakages. An avalanche consisting of
a sequence of fuse breakages ensues but ends when no
more fuses can break in the system and the network is
still conducting. The input current is increased after the
avalanche until a new avalanche is initiated and so on
until the whole network breaks down. We have also per-
formed the simulation using a different (one-at-a-time,
i.e., sequential breakage of fuses with maximum current
until the breakdown of the entire network) dynamics de-
scribed in Ref. [2] and the results are qualitatively similar
to the avalanche procedure described here.

We have studied L x L square lattices of sizes L up
to 80 with both type I and type II defects using the

method described above. We have also considered lat-
tice sizes up to L = 128 for low defect concentrations.
Typically our method takes 16-20 seconds for L = 80
system with defect concentrations p; = p, = 0.1 to con-
verge to the solution with an accuracy 1078 on the Cray
YMP supercomputer.

We study, following Ref. [2], both ¢; = I;/L, the in-
put current per node at which the first fuse breaks in the
network, and i, = I,/L, the input current per node at
which the whole network breaks (there is no conducting
path in the network). Above the percolation threshold
(when the system has finite conductance), for p; = 0
and p, # 0, i.e., with finite concentration of the type
II defects, one can argue that ¢; depends on the largest
probable linear defect in the system, as in the case with
purely type I defects considered in Ref. [2]. There is one
difference, however, in the direction of the “most criti-
cal defect”: The most critical defect in this case is along
the direction of the input current in contrast to the case
with purely type I defects in which the defect extends
transverse to the input current direction. Nevertheless,
the arguments presented in Ref. [2] for the case of finite
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FIG.2. The dependence of the average breakdown current

(a) i1 and (b) s on the size of the system L. The average is
taken over 50 configurations for each L. The data are obtained
with p; = 0.1, p, = 0.0 (circles), p; = 0.0, ps = 0.1 (triangles),
pi = 0.05, and p, = 0.05 (crosses).
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concentration of type I bonds remain valid for this linear
type II defect. One can solve for the current density at
the boundary of an elliptical type II defect in an infinite
medium following the calculation for the type I elliptical
defect in Ref. [2]. The maximum current density is given
by jo(1 + b/a), where a and b are the semiaxis lengths
transverse and parallel to the current flow, respectively,
and jo is the current density at infinity. The maximum
density occurs at the tips of the defect along the current
flow direction in contrast to the case of a type I ellipti-
cal hole where the maximum value of jo(1 + a/b) occurs
at the tips transverse to the current flow. Hence, fol-
lowing the Lifshitz type of argument one expects that,
for small defect concentrations, the breakdown current
1y vanishes logarithmically with the size of the system:
i1 ~ const[l + K (In L)*]~! [2]. This is indeed observed
in our simulation (Fig. 2) and our data are consistent
with @ = 1. In addition, we find numerically that the
logarithmic dependence of ¢; on the size of the system
persists even for the case when both type I and type II
defects are present in the network. This suggests that
the Lifshitz type of argument remains valid for this case

where the most critical defect is a combination of type I
and type II defects.

What is less clear is the scaling behavior of 7;. In this
case we must consider a mixture of type I and type II de-
fects (even for the case of only type II defects in the initial
configuration), because type I defects are continuously
generated as the breakdown process proceeds. Naively
one might expect a different scaling behavior from the
case of purely type I defects as type II defects lead to a
different current distribution. This turns out not to be
the case. Our results show that the scaling behavior of
ip does not depend on the existence of type II defects. A
careful consideration of the simulation process suggests
the following explanation of this result: As the break-
down process continues, more and more type I defects
are generated. On the other hand, type II defects are
gradually “screened” (surrounded) by the type I defects;
this occurs because the fuses neighboring a type II de-
fect carry relatively higher currents and are more likely
to break. The behavior of the breakdown process can be
expected to be dominated by type I defects, and hence
the scaling behavior for i, should not be sensitive to the
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FIG. 3. Cumulative distributions F of the breakdown currents ¢; and i, for a fixed defect concentration. A 40 x 40 system
is used with p; = p, = 0.05. (a) The quantity Ao = —In{—1In[l — F(31,4)]} is plotted vs 1/¢;,5. For a double exponential
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existence of type II defects. The dependence of the aver-
age breakdown currents i, on the size of the system L is
shown in Fig. 2(b).

We have also obtained the cumulative distributions
F of the breakdown currents (i1,%) for a fixed defect
concentration and size of the system L = 40 by taking
the data for 2000 configurations. The double exponen-
tial form Fy.(i) = 1 — exp[—ciexp(—cz/1)], suggested in
Ref. [2], affords a better fit for these distributions (see
Fig. 3) than the commonly used Weibull form [2, 18]:
F, (i) = 1 — exp[—c i™] in breakdown phenomena. How-
ever, the double exponential fit is not as good for small
ip as that for ;.

These results indicate that the breakdown behavior
above the percolation threshold is unchanged in the pres-
ence of type II defects and the attendant large variations
in the resistances.

IV. CONCLUSIONS

In conclusion we have devised a Green’s function
method to solve for the current distributions in random
fuse network problems. This method crucially differs

from the existing conjugate gradient methods as it only
keeps track of the defect bonds to obtain the current
distribution. It is easy to consider two different types
of conjugate defects with zero and infinite resistance in
this formulation. We have considered a network with
both types of defects and find that the breakdown fea-
tures are not altered in the presence of large variations in
the defect bond resistances. This method can be useful
in the study of disorder in systems such as high T, su-
perconducting films which can be modeled as a network
with both kinds of defects. We finally remark that our
method can be generalized to study crack generation in
elastic materials, for example, polymer crack problems,
in which a small fraction of bonds rupture during the
elastic breakdown.
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